CCCTC-Binding Factor (CTCF)

- Binding sites universally present in all mammalian differentially methylated regions
- Highly conserved
- Sensitive to methylation,
- Contributes to formation and structure of chromatin

Overview of IDH and its mutations

- IDH proteins involved in Kreb's cycle, where it catalyzes the production of alpha-ketoglutarate
- Some mutations of IDH lead to the production of abnormal 2-hydroxyglutarate
 - 2-HG is an inhibitor of alpha-ketoglutarate dependent enzymes, including demethylases

Previous work established the prevalence of DNA hypermethylation due to IDH mutations in patients with leukemia

 TET2 Wildtype
 TET2 Mutant

 IDH1/2 Wildtype
 300
 28

 IDH1/2 Mutant
 57
 0

С _______

p value: 0.009 (left-tailed Fisher test)

Table 2. Most frequently altered GBM CAN-genes. All CAN-genes are listed in table S7.

Table of gene alterations in glioblastoma

Gene	Point mutations*		Amplifications†		Homozygous deletions†		rable of gene atterat		
	No. of tumors	Fraction of tumors (%)	No. of tumors	Fraction of tumors (%)	No. of tumors	Fraction of tumors (%)	Fraction of tumors with any alteration (%)	Passenger probability‡	
CDKN2A	0/22	0	0/22	0	11/22	50	50	<0.01	
TP53	37/105	35	0/22	0	1/22	5	40	< 0.01	
EGFR	15/105	14	5/22	23	0/22	0	37	< 0.01	
PTEN	27/105	26	0/22	0	1/22	5	30	< 0.01	
NF1	16/105	15	0/22	0	0/22	0	15	0.04	
CDK4	0/22	0	3/22	14	0/22	0	14	< 0.01	
RB1	8/105	8	0/22	0	1/22	5	12	0.02	
IDH1	12/105	11	0/22	0	0/22	0	11	< 0.01	
PIK3CA	10/105	10	0/22	0	0/22	0	10	0.10	
PIK3R1	8/105	8	0/22	0	0/22	0	8	0.10	
-								IDH1 mutation	

Survival Rates of patients With GBM IDH1 mutations

Significant because a significant portion of young patients have IDH1 mutations, and were associated with an increase in overall survival

		Sex	Recurrent GBM†	Secondary GBM‡	Overall survival (years)§	IDIT IIIddation			
Patient ID	Patient age (years)*					Nucleotide	Amino acid	Mutation of TP53	Mutation of PTEN, RB1, EGFR, or NF1
Br10P	30	F	No	No	2.2	G395A	R132H	Yes	No
Br11P	32	M	No	No	4.1	G395A	R132H	Yes	No
Br12P	31	M	No	No	1.6	G395A	R132H	Yes	No
Br104X	29	F	No	No	4.0	C394A	R132S	Yes	No
Br106X	36	M	No	No	3.8	G395A	R132H	Yes	No
Br122X	53	M	No	No	7.8	G395A	R132H	No	No
Br123X	34	M	No	Yes	4.9	G395A	R132H	Yes	No
Br237T	26	M	No	Yes	2.6	G395A	R132H	Yes	No
Br211T	28	F	No	Yes	0.3	G395A	R132H	Yes	No
Br27P	32	M	Yes	Yes	1.2	G395A	R132H	Yes	No
Br129X	25	M	Yes	Yes	3.2	C394A	R132S	No	No
Br29P	42	F	Yes	Unknown	Unknown	G395A	R132H	Yes	No
mutant patients (n=12)	33.2	67% M	25%	42%	3.8	100%	100%	83%	0%
(n=12) IDH1 wild- type patients (n=93)	53.3	65% M	16%	1%	1.1	0%	0%	27%	60%

Downloaded from htt

CTCF Binding and Gene Insulation

- Used ChIP-Seq to map CTCF binding for loci in IDH mutant (red) vs wild type (black) tumors
- Used WGBS data to determine methylation of loci with reduced CTCF binding

Effect of Hypermethylation on Boundaries

- Used Hi-C to determine TAD boundaries
- Gene correlation for normal brain tissue samples

 IDH mutant gliomas exhibit inverse effect (stronger correlation across boundaries)

Topological Domain Boundaries

- Pinpointed boundaries disrupted by IDH mutations- 203
- IDH mutants have boundaries with higher DNA methylation and lower CTCF binding compared to wild-type tumours
- Gliomagenesis: *PDGFRA* one of the genes in the top scoring domains of overexpression in *IDH* mutant gliomas

PDGFRA

HiC data (kb) to investigate topology

H3K27ac = enhancer-associated (*FIP1L1*)

PDGFRA: Identifying Regulatory Elements

- Enhancer upstream of FIP1L1 strong acetylation
- Used Chromosome Conformation Capture (3C)
- Intragenic: ~50kb; *FIP1L1*: ~900kb

Removing Methylation Causes Effect Reversal

Insulator CRISPR Deletion

Insulator Deletion Results in PDGFRa Expression

Research with Potential Implications

CTCF/cohesin-binding sites are frequently mutated in cancer

Riku Katainen^{1,2,6}, Kashyap Dave^{3,6}, Esa Pitkänen^{1,2,6}, Kimmo Palin^{1,2,6}, Teemu Kivioja¹, Niko Välimäki^{1,2}, Alexandra E Gylfe^{1,2}, Heikki Ristolainen^{1,2}, Ulrika A Hänninen^{1,2}, Tatiana Cajuso^{1,2}, Johanna Kondelin^{1,2}, Tomas Tanskanen^{1,2}, Jukka-Pekka Mecklin⁴, Heikki Järvinen⁵, Laura Renkonen-Sinisalo^{1,5}, Anna Lepistö⁵, Eevi Kaasinen^{1,2}, Outi Kilpivaara^{1,2}, Sari Tuupanen^{1,2}, Martin Enge³, Jussi Taipale^{1,3} & Lauri A Aaltonen^{1,2}

Mutations at CTCF/cohesin sites

Mainly mutations to C and G

Occurs most at sites bound by CTCF and cohesin

Not due to POLE proofreader

Mutations at CTCF/cohesin sites

Mainly mutations to C and G

Occurs most at sites bound by CTCF and cohesin

Not due to POLε proofreader

Observed in other cancer types

Questions?